Hungarian flagEnglish flag
1191 Budapest, Földváry u. 2.
info@meter.hu +36 1 282 9896
Az univerzális szabályozók funkciói
2010-02-09

A mérnöki tudományok bármilyen újszerűek, magukon viselik a fejlődés nyomait. Mindig történelmi visszatekintéssel kell kezdenünk a téma tárgyalását.

A múlt században is tudtunk szabályozni. Az analóg készülékekkel is sok feladatot megoldottunk. A digitális technika először csak az analóg készülékek másolására volt alkalmas. A fejlődés és a verseny egyre nagyobb teljesítményekre késztette a gyártókat. Mindenki több funkciót épített a szabályozójába, mint versenytársa. A piac is diktálta a fejlődés ütemét. A technológiák fejlődését a szabályozók követték. Így alakult ki a mai helyzet.

Nincs két egyforma szabályozó a világon. Nincs két egyforma kezelési mód. Nincs egységes terminológia. Ezt lehetne még tovább sorolni.

A mikroprocesszorok programozási technikája is úgy fejlődött, hogy a szabályozók algoritmusai is végtelen változatosságot mutatnak. A régi másolgatás ma már gazdaságtalan. Egy szabályozó belső tartalmának megfejtése vagy lehetetlen, vagy költségesebb, mint egy új megírása.

A szabályozók tehát típustól függően másként oldják meg ugyanazt a feladatot. Ismét ott vagyunk, ahonnan elindultunk. Az Ön választásán múlik, hogyan fog működni az Ön által automatizált szerkezet.
Az univerzális szabályozók az analóg hőmérsékletszabályozókból, szintszabályozókból, fordulatszám-szabályozókból, stb. alakultak ki. Jelenlegi fejlettségük is ezt tükrözi. Alkalmasak a legkülönfélébb feladatok ellátására ezek közül néhányat összefoglaltunk a 2. táblázatban.

Sokzónás alagútkemence Autokláv Tésztagyár
Többzónás keramikus kemence Reaktor Hűtőház
Védőgázas kemence Műanyag fröccsöntő Fóliasátor
Hőkezelő automata Szárítószekrény Keltető és baromfinevelő
Vákuumkemence Sörgyári gép Húsipari gép
Olvasztókemence Erjesztő Nagykonyhai gép
Üvegipari kemence Érlelő Hőközpont
Kristálynövesztő kemence Sterilizátor Kazán
Többzónás csőkemence Mosodai berendezés Gáztüzelésű berendezés
Festékbeégető Élelmiszeripari gép Csomagológép

Ezt a sokféle feladatot az univerzális szabályozó speciális program-blokkok kívülről lehetséges összekapcsolásával látja el. Ez a feladatmegoldás logikája is. Ugyanazt a feladatot ugyanabban a szabályozóban többféle módon lehet megoldani.
Az univerzális szabályozó belső felépítése alapján ismerjük meg a fontosabb funkciókat.

A. A bemenetek
A szabályozó a szabályozott rendszer állapotát bemeneteivel érzékeli. A bemeneten érkező értékeket feldolgozza és a kapott eredmények alapján megváltoztatja a rendszer állapotát. Az univerzális szabályozónak többféle bemenete van.
Az analóg bemenetek fajtái a 3. táblázatban láthatók

Hőelemek M, T, U, J, L, E, N, K, Platinel, S, R, B, A, C
Ellenálláshőmérők Pt385 (100, 200, 500 és 1000 Ohm) Pt392 (100, 200, 500 és 1000
Ohm) Cu10, Cu100, Ni100, Ni120, FeNi604
Thermisztorok KTY83 (hidegpont) és KTY85
Szabványos 0-20 mA, 4-20 mA, 0-2000 Ohm, 0-200 mV, 0-1 V, 0-5 V, 0-10 V
Szabadon választható Jelleggörbe 32 szabadon választott pontra
3. táblázat

A digitális bemenetek külső feszültségmentes kontaktusokhoz csatlakoznak és így a rendszerben valamelyik állapotának változását érzékelik és valamit kapcsolnak. Ez a kapcsolás az univerzális szabályozóban a konfiguráláskor meghatározott folyamatot hajtja végre.

Látható, hogy az UC bemenetei hasonló választási lehetőséget is biztosítanak, mint a PLC bemenetei. Vitathatatlan, hogy ez a rendszerek bizonyos fajtáinál nagy előnyt jelent.

Az UC sok hasznos tulajdonsága közül a konfigurálható bemenetek sokfélesége szembetűnő. Az UC tápegységgel együtt belefér egy 48x96x110 mm-es dobozba. Minden a dobozon belül van (ezért hívták kompaktnak). Nem kell külön panel, kiegészítés, kiterjesztés. A gazdaságossági kérdés tiszta és áttekinthető. Az UC ára a kiválasztott verzióban X Ft. A PLC ára is meghatározott, de nagyon nagy gyakorlat kell a kiválasztáshoz, mert nagyon sok elemből állhat!

B. A kimenetek
A bemenetekhez hasonlóan a kimenetek is univerzálisak. Tehát miden beavatkozóhoz találhat megfelelő kimenetet. A digitális kimenetekkel közvetlen kapcsolatot létesíthet PLC-vel. A PLC és UC készülékekből összeállított szabályozó-vezérlő műszerrel nagyon sok különleges feladat oldható meg.

C. A belső funkciók
A fontosabb funkciók a 3. ábrán láthatók.

D. Az ember-gép kapcsolat
Minden műszerkönyv így kezdődik: Easy to use. Easy commissioning. Könnyű használni. Könnyű üzembe-helyezni. Ezt nem lehet vitatni, hiszen ami egy súlyemelőnek könnyű, az még lehet másnak nehéz. A tapasztalok alapján biztosan megállapítható, hogy az UC konfigurálása, adatainak megváltoztatása könnyebben tanulható meg, mint a PLC programozása. Ma hazánkban ez is szempont. Tőlünk nyugatabbra szakembert hívnak, ha az automatika elromlott, vagy elállítódott (üzemzavar). Nálunk elvárják, hogy ilyen irányú képzettséggel nem rendelkező ember oldja meg a feladatot. Minden gyártó igyekszik ezért az ember-gép kapcsolatot a lehető legjobbá tenni. (Természetesen ennek határa a szabályozás és vezérléstechnika alapjainak ismerete. Mi a válasz a telefonon feltett elkeseredett kérdésre? Én csak azt akarom, hogy a virsli-főző üstben 65 fok legyen. Mi az, hogy PID?)
Az ember az UC-vel nyomógombon, vagy PC-n keresztül tarthat kapcsolatot. Kapcsolat felvételének célja a lekérdezéstől a szabotázsig akármi lehet. Az UC hozzáférési felülete a menü. Ez a menü természetesen hasonlít más mikroprocesszoros készülékek kezelő menüire, így a PC programok legördülő menüire is. A konkurens UC-k a hasonlatosság ellenére nagyon különböző menüket használnak. Vannak menük, amelyekben meglátszik a fejlesztés időbeli sorrendje vagy a régi egységekkel azonosak akarnak lenni. Itt-ott beszúrnak egy menüpontot egy üres helyre és ezzel megbontják a konfigurálás logikáját. A menü-pont nem ott van ahol lennie kellene. Az ilyen gyártmány egyébként jól működhet, de kezelése nem logikus, nehézkes! Az igazi átlátható, könnyen megjegyezhető menü az UC funkcióit tagoltan, logikus rendszerben foglalja össze. A menük felépítése lineáris, mátrix, egymásba ágyazott (stack-elt) vagy fa-strukturált lehet és ezek keveréke. A gyakori hétszegmenses kijelzés a megjeleníthető mnemonikok számát erősen korlátozza, így sokszor a kevesebb több! A készülékek sok többszörözött funkciót tartalmazhatnak (ALARM-ok),ezért célszerű, ha ezek állítása nem tartalmaz apró eltéréseket, vagyis a menü erősen konzekvens (következetes). Sok készülék gépkönyve és a menüje kereszt-hivatkozást tartalmaz, amit a kezelőnek emlékezetben kell tartania. Az ilyen berendezés beállítása óriási koncentrációt igényel, egy csatolt állítás elhagyása esetén a készülék nem a dokumentált üzemmódba kerülhet. Egy modern berendezés, még a legbonyolultabb is ezt a feladatott automatikusan, nem látható módon elvégzi.
A menüpontok szervezésében és megjelenítésében két főcsoport létezik.

a. A régebbi a tulajdonságokat mátrixban tartalmazza. A sor-oszlop azonosító egy tulajdonság kódjának felel meg. Előnye a tömörség, hátránya az, hogy megjegyezhetetlen. Csak műszerkönyvből lehet például azt megtudni mit jelent A7. Visszafelé a kérdés még bonyolultabb.

b. Az újabb menük az UC tulajdonságait csoportokra bontják és a szabályozás logikája szerint szinteken helyezik el. A szinteket lapoknak is nevezik. Egy lapra (szintre) egymással szoros kapcsolatban lévő tulajdonságok kerülnek.

Példaként nézzük meg egy egyszerű szabályozó menüjét. Ez a legkisebb UC. A legnagyobb UC menüje is ilyen egyszerű, csak sokkal több menüpontot tartalmaz. (4. ábra)

Minden UC menü tartalmaz hozzáférési jogokat, vagyis letiltásokat. A jó menü a beállításokat úgy csoportosítja, hogy ezek hierarchikus rendben legyenek. A hierarchiában a UC tulajdonságai a felhasználás logikáját követik. A leggyakrabban használt és a technológia kezelőjére bízott beállítások a legfelső szinten vannak. A gép beállítását tartalmazó szint ez alá kerül, mert ezt csak a technológus kezelheti. A szabályozó algoritmust módosító beállítások egy szinttel ez alá kerülnek, mert ezt csak a rendszergazda állíthatja be. Ez a struktúra nemcsak az áttekinthetőséget (Easy to use), hanem a biztonságot is szolgálja. Ezért az UC beállítást és konfigurálást tartalmazó szintjeit jelszóval letilthatóvá kell tenni. Így minimalizálható a tévedés és a szabotázs kockázata. Természetesen nem kell ágyúval verébre vadászni. A biztonsági követelmények mások egy falusi pékségben és egy atomerőműben. Egyszerű védelmet mutat be az 5. ábra.

A beavatkozó eszközök
Minden rendszert a beavatkozókon keresztül változtatunk meg. A feladatok sokfélesége miatt a beavatkozók fajtáit még felsorolni sem lehet. A szabályozók és vezérlők csak azokat a beavatkozókat tudják kezelni, amelyek erre alkalmasak. Nem képes egy autót kormányozni egy automatika, ha az nincs ellátva egy szervo-motorral.
Az automatikához gyártott beavatkozó mindegyike alkalmas valamilyen módon a készülékhez csatlakozni. A választék itt is óriási a Trabanttól a luxus limuzinig.

A beavatkozókat sokféleképen lehet osztályozni. Így bemenet szerint, a szükséges segédenergia szerint, a funkció szerint.

Természetesen minden korszerű szabályozó, vezérlő készülék kimenetei alkalmasak a beavatkozó meghajtására és ez viszont is igaz. Anélkül, hogy ezt valami szigorú szabvány írná elő, minden gyártó saját érdekében igazodik a nemzetközileg kialakult rendszerhez. Mi értelme volna egy 27-93 mA bemenetnek, bár ennek semmilyen műszaki, vagy elméleti akadálya nincs.

Az UC és a PLC egyformán jól kezeli a beavatkozó eszközöket. Ilyen előny, vagy hátrány nem létezik.
A beavatkozók két speciális összekapcsolását itt kell megemlíteni, nevezetesen a HŰT-FŰT és a motoros szelep meghajtást, amelyek együtt alkotnak egy beavatkozót.

A HŰT-FŰT általában két relé (OPC) összekapcsolásával működik. Az egyik relé a fűtőkészüléket, a másik a hűtőkészüléket kapcsolja. Energiatakarékossági szempontból a két készüléket egyszerre nem ajánlatos működtetni. Huzalozással nem lehet reteszelni a beavatkozást, mert a PID algoritmus a keletkező hibajel miatt begerjesztené a folyamatot (például bekapcsolja a fűtést, amely reteszelve van). A jó UC erre a feladatra speciális algoritmust tartalmaz. Tehát ez a beavatkozó két reléből és egy speciális algoritmusból áll.
A motoros szelep is két reléből áll. A reléket összekötő algoritmus a motort PID tulajdonságokkal jobbra, vagy balra forgatja. Itt a vészleállások miatt szükséges lehet a reteszelés, ezért a reléket kétféleképen lehet bekötni, ahogyan ezt a 6. ábra mutatja.

Kapcsolódó anyagok: